Wind drives Waves

Determined by:

1. Velocity
2. Fetch
3. Duration [time]

Elliptical water wave

The wave moves with a given speed but the water does not.

Diagram of a wave

$L=$ Wavelength
$H=$ Height
$T=$ Period; time from crest to crest

Wave Velocity $=.6 \times \mathrm{Lft} / \mathrm{T} \mathrm{sec}$ example:
$.6 \times 100 \mathrm{ft} / 5 \mathrm{sec}=12 \mathrm{kts}$
[. 6 converts ft/sec into knots]
Wavelength = Wave Velocity x Tsec/. 6

Beach Waves

Wave refraction
 Windwave vs Swell

When depth $=1 / 2$ L"feels bottom" example: 100ft wave feels bottom in 50ft depth.

Breakers:

H exceeds $5 / 8$ depth of water [$1.6 \times \mathrm{H}$]
6 ft wave breaks when water is 10 ft deep
8 ft wave breaks when water is 13 ft deep
Ratio H:L exceeds 1:7 [steepness]
If waves are 70 ft apart; breaks if wave exceeds 10 ft

